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The built environment… 

• In the future, the built 

environment will need to deal 

not only with “energy saving”, 

but also “very high-quality 

indoor environment” 

• Healthy 

• Productive 

• Comfortable 

• Energy-producing 

• ….. 

• Solutions are needed! 
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…Toward the future 
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The future is so 

uncertain and highly 

complex: 

The need to predict the 

performance of future 

solutions 

using computational 

simulation tools 

e.g. RADIANCE! 

Radiance-online.org (2012) 



Some familiar terms 

/ Unit Building Physics and Services PAGE 3 18-9-2012 

Wavelength 

Luminous 

intensity 

Visual comfort 

Performance 

Uniformity 

Irradiance 

Sustainability 

Illuminance 

P
r
e

f
e

r
e

n
c

e
 

Raytracing 

Building 

Simulation 

Distribution 
P

e
r
c

e
p

t
i
o

n
 

Behaviour 

Lighting 

Daylight 

G
l
a

r
e

 
i
n

d
e
x
 

Light source 

Sky model 

Case #1 

Contrast 

Optimisation 

Material 

Uncertainty 

Case #2 



Rizki A. Mangkuto 

Myriam B.C. Aries 

Evert J. van Loenen 

Jan L.M. Hensen 

Case #1  

 

Virtual Natural Lighting Solutions 

 
 

Unit Building Physics and Services 

Department of the Built Environment 

Eindhoven University of Technology 



…Toward the future 
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The future is so 

uncertain and highly 

complex: 

The need to predict the 

performance of future 

solutions 

 using computational 

simulation tools 

Low availability of 

natural (day-)light! 



The idea 
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Virtual 

natural 

lighting 

solution 

(VNLS) 
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Approach towards VNLS (model) 

Light directionality 

 

 

With view, 

diffuse 

Without view, 

diffuse 

Without view, 

directional 

With view, 

directional 



• Typically diffuse light 

distribution 

• Applied for situations 

where view is not 

considered the most 

important thing, e.g. 

when comparing 

energy consumption. 
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Model without view, diffuse  

Philips Lighting (2007) De Vries et al. (2009) 

Smolders & de Kort (2012)  



• For example, real 

windows under CIE 

overcast sky: 

 gensky –c –b 22.9 

• …compared to virtual 

windows:  

 light 11.856 

11.856  11.856 

• Combined with 

general lighting ETAP 

luminaire 2x28 W 
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Model without view, diffuse – (2) 
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Model without view, diffuse – (3) 
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• Typically (also) diffuse light 

distribution, but with image 

projected or displayed. 

• Applied for situations where 

view is considered 

influential, e.g. when 

comparing glare perception 

from various view types. 
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Model with view, diffuse  

Philips Homelab (2006) 

Winscape (2011)  
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Model with view, diffuse – (2) 

• For example, comparing 5 different 

images as viewing scene 

 

 

 
 

 “Africa” 

“Creek” 

“First Floor” 

“Hairdresser” 

“Night Skyline” 

IJsselsteijn et al. (2008) 
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Model with view, diffuse – (3) 

• 2D image mapped on light material 
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Model with view, diffuse – (4) 
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• Still in conceptual 

model. 

• View is simplified: green 

“ground” and blue “sky”. 

• Focused on directional   

light from the “ground” to 

the ceiling. 

• Applied for optimising 

space availability and 

uniformity. 
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Model with simple view, directional  



• Input variables: 

• Interval of tilt angle (°): 1.0; 

1.5; 2.0 

• Beam angle (°): 38; 76; 114 

• Total luminous flux of the “sky” 

(lm): 6200, 11100, 19900 

• Distance between windows 

(m): 0; 0.75 
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Model with simple view, directional – (2)  

Ambience parameters: –ab 4 –aa 0.15 
–ar 128 –ad 512 –as 256 –ds 0.2 
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Model with simple view, directional – (3) 

• Output variables: 

• Space availability:  

     %A =                        × 100%   ;  N =1944 

 

• Uniformity: U0 =  

            

• Average ground contribution on the ceiling:  

  

     %Gav =                         × 100%   ; N =10 

 

• Average probability of discomfort glare: 

     PDGav = ¼ (DGP + DGIn + UGRn + CGIn) 

  where DGIn = 0.01452 × DGI;  UGRn = 0.01607 × UGR;  

  CGIn = 0.01607 × CGI; (Jakubiec & Reinhart, 2012) 

n(E ≥ 500 lx) 

        N 

Emin 

 Eav 

 1        Eground-i 
 

 N         Etotal-i 

   N 

 

 i = 1             

Σ  



• Compared to a similar scene where VNLS 

is replaced with real windows under CIE 

overcast sky, with equal average surface 

luminance. 

• The proposed criteria: 

• Space availability: %A VNLS > %A RW 

• Uniformity: U0 VNLS ≥ U0 RW 

• Average ground contribution on the ceiling:          

0.9(%Gav RW) ≤ %Gav VNLS ≤ 1.1(%Gav RW) 

• Average probability of discomfort glare:   

 PDGav VNLS ≤ PDGav RW    

• Average surface luminance:                     

Lav ≤ 3200 cd/m2                   
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Model with simple view, directional – (4) 
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Model with simple view, directional – (5) 

• Probability of discomfort glare at position A, B, C: 

 

 

• Position C experiences the largest prob. of discomfort glare  

• Standard dev. in VNLS scenes are comparable to those in 

RW scenes  PDGav can be used for comparing both 

VNLS and RW 

Type Conf. IA (°) BA (°) Φ (lm) Pos. DGP DGIn UGRn CGIn PDGav Stdev 

VNLS 1a 2.0 76 11100 

A 0.24 0.21 0.36 0.39 0.30 0.09 

B 0.21 0.20 0.32 0.35 0.27 0.08 

C 0.27 0.33 0.46 0.48 0.38 0.10 

RW 1a L = 3200 cd/m2 

A 0.24 0.21 0.35 0.39 0.30 0.08 

B 0.21 0.19 0.31 0.33 0.26 0.07 

C 0.26 0.31 0.43 0.45 0.36 0.09 

1a, VNLS 

1a, RW 
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Model with simple view, directional – (6) 

• Results example of VNLS vs RW 

 Type Conf. IA (°) BA (°) Φ (lm) %A U0 %Gav PDGav 

VNLS 

1a 2.0 38 11100 28.0 0.37 48.8 0.35 

1a 1.5 38 11100 29.3 0.37 46.8 0.35 

1a 1.0 38 11100 29.9 0.37 44.6 0.35 

RW 1a L = 1800 cd/m2 14.3 0.18 14.3 0.39 

VNLS 

2a 2.0 76 6200 11.5 0.32 49.2 0.36 

2a 1.5 76 6200 9.4 0.33 46.5 0.36 

2a 1.0 114 6200 5.3 0.35 44.1 0.36 

RW 2a L = 1800 cd/m2 14.7 0.16 14.7 0.40 
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Model with simple view, directional – (7) 

d (m) IA (°) BA (°) Φ (lm) 

%A -0.01 0.00 -0.13 0.98 

U0 0.12 -0.23 0.94 0.00 

%G av -0.06 0.36 -0.82 -0.01 

PDG av 0.04 -0.09 -0.85 0.47 
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• Most of the VNLS with BA = 114° (wide) 

satisfy all performance criteria.  

• The total luminous flux is highly influential 

to the space availability. 

• The beam angle is highly influential to the 

uniformity, average ground contribution, and 

average probability of discomfort glare. 



• As a simulation tool, RADIANCE can be employed for 

predicting lighting performance of future solutions such 

as VNLS. 

• The modeling approach is driven towards providing 

good directionality and complex view, while keeping the 

visual comfort comparable to the real window situation. 

• The next steps will be improving all of the lighting 

aspects, as well as evaluating energy performance of 

the selected solutions with other simulation tools. 
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Conclusions & outlook 
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Indoor Air Quality & Photocatalytic Oxidation 

• Indoor Air Quality (IAQ) is important: 

• People in modern urban areas spend 

85%-90% of their time indoor 

• Synthetic materials, combustion, 

human activities, industrial processes 

can release a range of pollutants, 

resulting in indoor air pollution 

• Pollutants can be removed by source 

control, increasing ventilation rates 

or air purification. 

• Photocatalytic Oxidation (PCO) is a 

potential technology for (passive) 

indoor air purification. 
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Photocatalytic Oxidation (PCO) modeling 

• Previous research: 

1. Development of a kinetic model for NOx (inorganic compound) 
 Q.L. Yu, M.M. Ballari, H.J.H. Brouwers (2009) (2010) 

 

2. Implementation of the kinetic model in a Computation Fluid 

Dynamics (CFD) model 
 H.A. Cubillos Sanabria, (2011) 

 

• No radiance model was applied, causing to: 

− Neglect the glass cover in the reactor setup (1) 

− Assume a uniform irradiance distribution during modelling (2) 
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The concept 

• A concept for PCO modelling is proposed, based on the 

previous research 

− Radiance model 

− Kinetics 

− Computation Fluid Dynamics 
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Prediction air purification 

capability

Computational 

Fluid Dynamics
Kinetics

Radiance 

model



The framework 
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First modeling study of the reactor setup 

Reactor
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Reactor

Glass cover

a. b.

(a) reactor setup (b) reactor 
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• An omnidirectional radiant intensity distribution over the 

longitudinal axis of the light source model is assumed, 

expressed in Li [Wm-2sr-1]. 

 

 

 

 

 

 

 

 

• The light source model is composed out of a:  

 (1) lamp base (no emission) 

 (2) border region (L = Ll /2) 

 (3) main light emitting area (L = Ll) 
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Validation 
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Reflection coefficient catalyst 

surface = 0.88 

 

LI =34.8 W/(m²sr) 
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-st 0.07 -ad 1024 -as 64 
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(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1 
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(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1 
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Result of simulation & analytical calculation 
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Conclusion and outlook 

• Both the measurement and the simulations have inaccuracies; the 

inaccuracy of the stochastic calculation is obtained with statistics.   

• The maximum error of the average values is ~4%, but due to uncertainty 

the error is raised to ~6% 

 

• The analytical calculation could not provide a correct estimation of 

the Ecatalyst /Eglass  ratio. Therefore, an equation from simulated data 

was derived:  

Eglass = (0.0975·σcatalyst + 0.904)Ecatalyst  

• The equation can be used to improve the kinetic model of NOx 

 

• Secondary modeling study in which: 

• The improved kinetic model is employed 

• Radiance model is integrated into a CFD model  

• Several cases are simulated in which the PCO is studied, using a 

benchmark office model for CFD 
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Questions? 


